ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Арматура трубопроводная

НОРМЫ ГЕРМЕТИЧНОСТИ ЗАТВОРОВ

Издание официальное

Москва Стандартинформ 2010

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0 - 2004 «Стандартизация в Российской Федерации. Основные положения».

Настоящий стандарт соответствует международному стандарту ИСО 5208:2008 «Арматура трубопроводная промышленная. Испытание давлением» (ISO 5208:2008 (E) «Industrial valves - Pressure testing of metallic valves») в части требований к герметичности затвора.

Сведения о стандарте

- 1 РАЗРАБОТАН Закрытым акционерным обществом «Научнопроизводственная фирма «Центральное конструкторское бюро арматуростроения» (ЗАО «НПФ «ЦКБА)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 259 «Трубопроводная арматура и сильфоны»
- 3 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от №

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения, сокращения и обозначения
4 Нормы герметичности затворов
4.1 Нормы и классы герметичности затворов арматуры, кроме регулирующей 4
4.2 Нормы и классы герметичности затворов предохранительной арматуры 6
4.3 Нормы и классы герметичности затворов регулирующей арматуры 6
5 Порядок установления требований по герметичности затвора в КД 7
6 Требования к испытаниям на герметичность затвора
Приложение А (справочное) Соответствие значений номинальных диаметров
и номинальных давлений10
Приложение Б (справочное) Нормы герметичности затворов арматуры, кроме
регулирующей, по воде
Приложение В (справочное) Нормы герметичности затворов арматуры, кроме
регулирующей,по воздуху12
Приложение Г (рекомендуемое) Рекомендации по назначению классов
герметичности арматуры
Приложение Д (справочное) Нормы герметичности затворов регулирующей
арматуры
Библиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Арматура трубопроводная НОРМЫ ГЕРМЕТИЧНОСТИ ЗАТВОРОВ

Pipeline Valves. Rates of sealibility

Дата введения – - -

1 Область применения

Настоящий стандарт распространяется на все виды трубопроводной арматуры (далее – арматуры) номинальных диаметров от DN 3 до DN 2000 на номинальное давление от PN 1 до PN 320 и устанавливает нормы и классы герметичности затворов.

Допускается устанавливать нормы герметичности затворов, отличные от норм, указанных в настоящем стандарте (в зависимости от конкретных условий эксплуатации арматуры), при согласовании заказчика с изготовителем арматуры.

Настоящий стандарт пригоден для целей сертификации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы:

ГОСТ Р 52720-2007 Арматура трубопроводная. Термины и определения ГОСТ Р 53402-2009 Арматура трубопроводная. Методы контроля и испытаний

ГОСТ Р ИСО 8573-1-2005 Сжатый воздух. Часть 1. Загрязнения и классы чистоты

ГОСТ 12893-2005 Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия

ГОСТ 17433-80 Промышленная чистота. Сжатый воздух. Классы загрязненности

3 Термины и определения, сокращения и обозначения

3.1 В настоящем стандарте применены термины по ГОСТ Р 52720, а также термины с соответствующими определениями:

3.1.1

герметичность затвора: Свойство затвора препятствовать газовому или жидкостному обмену между средами, разделенными затвором.

[ГОСТ Р 52720, пункт 6.24]

3.1.2

давление номинальное PN: Наибольшее избыточное рабочее давление, выраженное в кгс/см², при температуре рабочей среды 293 К (20 °C), при котором обеспечивается заданный срок службы (ресурс) корпусных деталей арматуры, имеющих определенные размеры, обоснованные расчетом на прочность при выбранных материалах и характеристиках прочности их при температуре 293 К (20 °C).

[ГОСТ Р 52720, пункт 6.1]

3.1.3

давление настройки предохранительной арматуры *Рн*: Наибольшее избыточное давление на входе в предохранительный клапан, при котором затвор закрыт и обеспечивается заданная герметичность затвора.

[ГОСТ Р 52720, пункт 6.7]

3.1.4

диаметр номинальный DN: Параметр, применяемый для трубопроводных систем в качестве характеристики присоединяемых частей арматуры.

Примечание— Номинальный диаметр приблизительно равен внутреннему диаметру присоединяемого трубопровода, выраженному в миллиметрах и соответствующему ближайшему значению из ряда чисел, принятых в установленном порядке.

[ГОСТ Р 52720, пункт 6.2]

3.1.5

затвор: Совокупность подвижных (золотник, диск, клин, шибер, плунжер и др.) и неподвижных (седло) элементов арматуры, образующих проходное сечение и соединение, препятствующее протеканию рабочей среды.

[ГОСТ Р 52720, пункт 7.3]

3.1.6

класс герметичности арматуры (класс герметичности): Характеристика уплотнения, оцениваемая допустимой утечкой испытательной среды через затвор.

[ГОСТ Р 52720, пункт 6.25]

3.1.7

норма герметичности затвора: Максимально допустимая утечка в затворе.

3.1.8

относительная утечка *бзат*, %: Количественный критерий не герметичности в затворе, представляющий собой отношение расхода (в м³/ч), среды, плотностью 1000 кг/м³, протекающей через закрытый номинальным усилием затвор регулирующей арматуры при перепаде давления на нем 0,1 МПа (1,0 кгс/см²), к условной пропускной способности.

[ГОСТ Р 52720, пункт 6.45]

3.1.9

среда испытательная: Среда, используемая для контроля арматуры.

[ГОСТ Р 52720, пункт 2.21]

3.1.10

утечка: Проникание вещества из герметизированного изделия через течи под действием перепада давления.

[ГОСТ Р 52720, пункт 6.44]

3.2 В настоящем стандарте применены следующие сокращения:

КД - конструкторская документация;

НД - нормативная документация;

ПМ - программа и методика испытаний арматуры;

ТУ - технические условия;

DN - диаметр номинальный;

PN - номинальное давление.

3.2 В настоящем стандарте применены следующие обозначения:

Dc - диаметр седла, мм;

P1абс - абсолютное давление до регулирующей арматуры, МПа (кгс/см²);

Рисп - давление испытательной среды, МПа ($\kappa \Gamma c/cm^2$);

 P_{H} - давление настройки предохранительной арматуры;

 $\Delta Pucn$ - перепад давления на регулирующей арматуре, МПа (кгс/см²);

Kv_y - условная пропускная способность, м³/ч;

Pp - рабочее давление;

tp - рабочая температура;

q - допустимая утечка в затворе арматуры, мм $^3/c$;

 $q_{0,6}$ - утечка при Pucn = 0,6 МПа;

 δ затво - относительная утечка в затворе регулирующей арматуры, % от K $\mathbf{v}_{_{\mathbf{y}}}$;

 ρ - плотность испытательной среды, г/см³.

4 Нормы герметичности затворов

4.1 Нормы и классы герметичности затворов арматуры, кроме регулирующей

4.1.1 Для затворов арматуры, кроме регулирующей, установлены нормы герметичности, соответствующие следующим классам герметичности: A, AA, B, C, CC, D, E, EE, F и G.

Нормы герметичности затворов арматуры, кроме регулирующей, приведены в таблицах 1 и 2.

Таблица 1 - Классы герметичности затвора арматуры, кроме регулирующей, по воде и воздуху

Класс	Норма герм	иетичности затво	етичности затвора q , мм 3 /с, для испытательных сред					
герме-	вода		воздух					
тич-	<i>Pucn</i> =1,1PN (<i>Pp</i>)	$Pucn = 0.6 \text{ M}\Pi a^{1)}$	Pucn = PN(Pp)					
ности	все	DNI	от РN 10	PN 250,				
	все	PIN	до PN 200 включ.	PN 320				
A	Отсутствие вид	имых утечек в те	чение времени испытания ²⁾					
AA	0,006·DN	0,18·DN	2)	Определяют				
В	0,01·DN	0,30·DN	$1,25 \cdot 10^{-2} \cdot K \cdot DN^{\frac{3}{2}}(Pucn+2)$	по таблице 2				
С	0,03·DN	3,00·DN	1,20 10 11 21 (1 40.1 2)					
CC	0,08·DN	22,30·DN						
D	0,10·DN	30,00·DN						
Е	0,30·DN	300·DN		-				
EE	0,39·DN	470·DN	-					
F	1,00·DN	3000·DN						
G	2,00·DN	6000·DN						

¹⁾ Для арматуры на номинальное давление менее PN 6,3 норма герметичности по воздуху (природному газу) соответствует указанной для Pucn=0,6 МПа, при этом утечку следует определять при Pucn=PN (Pp).

- 2) Для класса «А» не являются браковочными признаками:
 - при испытании водой образование росы, не превращающейся в стекающие капли, по контуру уплотнительной поверхности;
 - при испытании воздухом образование не отрывающихся пузырьков;
 - при применении технических средств диагностирования либо технических средств утечка в затворе менее 0,05 мм³/с. Средства диагностирования и технические средства должны обеспечивать точность измерения, согласующуюся с критерием допустимой утечки. Примером технического средства может служить гидропневмоаккумулятор, имеющий откалиброванную газовую полость.
- ³⁾ Коэффициент K, определяют по таблице в зависимости от класса герметичности.

Класс герметичности	AA	В	С
Коэффициент <i>К</i>	0,6	1,0	7,0

Т а б л и ц а 2 - Нормы герметичности затвора по воздуху при Pucn =PN (Pp) для арматуры номинальных давлений PN 250 и PN 320

Класс	Номи-	Норма	Норма герметичности затвора по воздуху q , мм 3 /c, при $Pucn = PN(Pp)$						
герме-	нальное	DN 3	DN 6	DN 10	DN 15	DN 20	DN 25	DN 32	DN 40
тичности	давление	DIV 3	DIV	DIV 10	DIV 13	D1 \ 20	D1 23	D1\ 32	D11 40
AA	PN 250	6,00	15,00	25,00	60,00	90,00	150,00	200,00	300,00
AA	PN 320	3,00	4,00	6,00	10,00	15,00	19,00	30,00	40,00
В	PN 250	10,00	25,00	41,67	100,00	150,00	250,00	333,33	500,00
Б	PN 320	5,00	6,67	10,00	16,67	25,00	31,67	50,00	66,67

Класс	Номи-	Норма г	Норма герметичности затвора по воздуху q , мм 3 /с, при $Pucn = PN(Pp)$						
герме-	нальное	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200	
тичности	давление	DIV 30	DI 05	DIV 60	DIV 100	DIV 123	DIV 130	DIN 200	
AA	PN 250	350,00	550,00	700,00	1000,00	1500,00	2200,00	3150,00	
AA	PN 320	55,00	70,00	100,00	150,00	220,00	300,00	450,00	
D	PN 250	583,33	916,67	1166,67	1666,67	2500,00	3666,67	5250,00	
В	PN 320	91,67	116,67	166,67	250,00	366,67	500,00	750,00	

- $4.1.2~\mathrm{B}$ Приложениях Б и В для всех классов герметичности приведены нормы герметичности q, мм 3 /с, по воде и воздуху в зависимости от класса герметичности и давления Pucn:
 - таблица Б.1 нормы герметичности по воде при $Pucn = 1, 1 \cdot PN (Pp);$
 - таблица В.1 нормы герметичности по воздуху при $Pucn = 0.6 \text{ M}\Pi a$;
- таблицы В.2 В.4 нормы герметичности по воздуху при Pucn =PN (Pp) для классов герметичности AA, B, и C.
- 4.1.3 Рекомендации по назначению классов герметичности для различных видов арматуры приведены в Приложении Г (таблицы Г.1 и Г.2).

4.2 Нормы и классы герметичности затворов предохранительной арматуры

- 4.2.1 Нормы и классы герметичности затворов в соответствии с таблицей 1.
- 4.2.2 Утечку в затворе определяют при давлении Pucn, равном давлению настройки Ph. Если в заказной спецификации не указано значение Ph, то утечку определяют при минимальном значении давления настройки изделия.

За норму герметичности затвора принимают утечку для значения номинального давления PN, ближайшего меньшего к давлению P_H .

4.2.3 Рекомендации по назначению классов герметичности приведены в Приложении Γ (таблицы Γ .1 и Γ .2).

4.3 Нормы и классы герметичности затворов регулирующей арматуры

- 4.3.1 Для регулирующей арматуры установлены следующие классы герметичности: I, II, III, IV, IV-1, IV-2, V и VI.
 - 4.3.2 Нормы герметичности приведены в таблице 3.

Класс герме-	Относи- тельная утечка в	Испы-	Норма герметичности затвора q , мм 3 /с							
тич- ности	затворе δ затв $$, $$ % от $K{ m V}_{ m y}$	ная среда	перепад давления ΔP_{ucn} , МПа				I	перепад ΔРисп	ц давле , кгс/см²	
I	Определен	ие величі	ины ут	ечки не	требует	ся (по со	огласов	анию с	заказчи	ком)
II	0,5									
III	0,1	Вода,	2000	\$	v [\mathbf{D}^{2}	9900	\$	v [A D ³⁾
IV	0,01	$-\frac{\text{Вода,}}{\text{воздух}}$ $2800 \cdot \delta$ затв · K V $_{y} \cdot \sqrt{\Delta P_{ucn}^{2)}} \cdot \rho$ $8800 \cdot \delta$ затв · K V $_{y} \cdot \sqrt{\Delta P_{ucn}^{2)}} \cdot \rho$	$\mathbf{K}\mathbf{v}_{\mathbf{y}}\cdot\mathbf{v}$	$\Delta P_{ucn} \cdot \rho$						
IV-1	0,0005									
IV-2	-	Воздух		55,6 · <i>L</i>	$Oc \cdot \Delta P_{ucr}$	ı		5,6 <i>·</i> L	$Oc \cdot \Delta P_{ucr}^{3)}$	ı
V	-	Вода		0,05 ·L	$Oc \cdot \Delta P_{ucr}$	ı		0,005	$Dc \cdot \Delta P_u^2$	2) cn
VI	-	Воздух	$3.0 \cdot \Delta P_{ucn} \cdot q_{maб\pi}^{{\scriptscriptstyle 1}}$				$0,3 \cdot \Delta P$	$q_{man}^{(1)} \cdot q_{man}^{(1)}$	бл	
	аметр седла L ечка $q_{maбn}$, мм	,	25 2,5	25 40 50 65			80 15,0	100 28,3	150 66,7	200 112,5

Таблица 3 - Нормы и классы герметичности затвора регулирующей арматуры

- 4.3.3 В Приложении Д для классов герметичности II, III и IV приведены нормы герметичности затворов q, мм 3 /с, по воде и воздуху в зависимости от значения условной пропускной способности:
- таблица Д.1 нормы герметичности затвора по воде при перепаде давления на арматуре $\Delta Pucn$ = 0,4 МПа;
- таблица Д.2 нормы герметичности затвора по воздуху при абсолютном давлении до арматуры $P_{1a6c} = 0.5 \text{ M}\Pi \text{a}$ и перепаде давления $\Delta P_{ucn} = 0.4 \text{ M}\Pi \text{a}$.
- 4.3.4 Рекомендации по назначению классов герметичности приведены в Приложении Г (таблица Г.3).

5 Порядок установления требований по герметичности затвора в КД

5.1 В ТУ (КД, ПМ, РЭ) разработчик арматуры указывает класс герметичности затвора арматуры или норму герметичности затвора. При этом в ТУ (КД, ПМ, РЭ) указывают вид испытательной среды и давление испытаний.

 $^{^{2)}}$ Если диаметр седла клапана Dc отличается от приведенных значений более чем на 2 мм, то утечку $q_{ma\delta n}$ следует определять интерполяцией, учитывая, что величина утечки пропорциональна квадрату диаметра седла.

5.2 Примеры записи в ТУ (КД, ПМ, РЭ) класса герметичности или нормы герметичности затвора арматуры.

Примеры

- 1 Для арматуры, кроме регулирующей: «Класс герметичности затвора «СС» по ГОСТ, испытательная среда воздух, давление испытаний Рисп=0,6 МПа».
- 2 Для регулирующей арматуры: «Класс герметичности затвора «II» по ГОСТ Р....., испытательная среда воздух».
- 3 «Утечка в затворе не более 17 мм 3 /с, испытательная среда вода, давление испытаний Pucn=1,1 PN».
- 5.3 При испытании природным газом устанавливают норму герметичности затвора, равную значению нормы герметичности затвора по воздуху, умноженному на 1,75.

6 Требования к испытаниям на герметичность затвора

- 6.1 Испытательные среды: вода и воздух. Допускается применять природный газ.
- 6.2 Требования, предъявляемые к качеству испытательных сред, приводят в НД изготовителя.

Если в КД не указано иное:

- вода должна соответствовать требованиям [1]. Допускается применять воду, соответствующую требованиям [2];
 - класс чистоты воздуха по ГОСТ Р ИСО 8573-1 или по ГОСТ 17433.

По ГОСТ Р ИСО 8573-1 - класс чистоты воздуха 684:

- 6 класс чистоты по твердым частицам;
- 8 класс чистоты по содержанию воды в жидкой фазе;
- 4 класс чистоты по суммарному (общему) содержанию масел.

По ГОСТ 17433 - класс чистоты воздуха 9.

- 6.3 Утечку в затворе определяют при давлении в выходном патрубке арматуры равном атмосферному давлению.
- 6.4 Допускается определять утечку в затворе подсчетом количества капель (пузырьков), применяя один из методов, приведенных во ГОСТ 53402. Величину

утечки рассчитывают в зависимости от диаметра насадки, присоединенной к выходному патрубку арматуры.

6.5 Значения времени выдержки арматуры под давлением при установившемся давлении и времени контроля (измерения), а также вид испытательной среды, методы контроля и испытаний и критерии оценки результатов испытаний - в соответствии с ГОСТ Р 53402.

По требованию Заказчика допускается применять методы контроля и испытаний, отличные от методов, приведенных в ГОСТ Р 53402, при условии описания в ТУ (КД, ПМ) методики проведения контроля и испытаний, а также критериев оценки результатов и обеспечении точности измерения параметров в соответствии с ГОСТ Р 53402.

6.6 Если для обозначения номинального диаметра арматуры применяется обозначение в дюймах, то для определения нормы герметичности затвора предварительно дюймы следует перевести в миллиметры в соответствии с таблицей А.1.

Если для обозначения номинального давления арматуры применяется класс давления ANSI, то для определения нормы герметичности затвора предварительно класс давления следует перевести в номинальное давление PN, кгс/см², в соответствии таблицей A.2.

Приложение А

(справочное)

Соответствие значений номинальных диаметров и номинальных давлений

Таблица А.1

Окончание таблицы А.1

Номинальный диаметр						
DN	дюйм					
3	1/8					
6	1/4					
8	1/4					
10	3/8					
15	1/2					
20	3/4					
25	1					
32	1 1/4					
40	1 1/2					
50	2					
65	2 1/2					
80	3					
100	4					
125	5					
150	6					
200	8					
250	10					

Номинальный диаметр					
DN	дюйм				
300	12				
350	14				
400	16				
450	18				
500	20				
600	24				
650	26				
700	28				
750	30				
800	32				
900	36				
1000	40				
1200	48				
1400	56				
1600	64				
2000	80				

Таблица А.2

Номинальное давление PN	20	50	64	110	150	260	420
Класс давления ANSI	150	300	400	600	900	1500	2500

Приложение Б (справочное)

Нормы герметичности затворов арматуры, кроме регулирующей, по воде

Таблица Б.1

Номи-				Класс	гермети	чности				
нальный	AA	В	С	CC	D	Е	EE	F	G	
диаметр DN	Норма	Норма герметичности затвора по воде q , мм 3 /с, при $Pucn = 1,1$ ·PN (Pp)								
3	0,018	0,03	0,09	0,24	0,30	0,90	1,17	3	6	
6	0,036	0,06	0,18	0,48	0,60	1,80	2,34	6	12	
10	0,060	0,10	0,30	0,80	1,00	3,00	3,90	10	20	
15	0,090	0,15	0,45	1,20	1,50	4,50	5,85	15	30	
20	0,120	0,20	0,60	1,60	2,00	6,00	7,80	20	40	
25	0,150	0,25	0,75	2,00	2,50	7,50	9,75	25	50	
32	0,192	0,32	0,96	2,56	3,20	9,60	12,48	32	64	
40	0,240	0,40	1,20	3,20	4,00	12,00	15,60	40	80	
50	0,300	0,50	1,50	4,00	5,00	15,00	19,50	50	100	
65	0,390	0,65	1,95	5,20	6,50	19,50	25,35	65	130	
80	0,480	0,80	2,40	6,40	8,00	24,00	31,20	80	160	
100	0,600	1,00	3,00	8,00	10,00	30,00	39,00	100	200	
125	0,750	1,25	3,75	10,00	12,50	37,50	48,75	125	250	
150	0,900	1,50	4,50	12,00	15,00	45,00	58,50	150	300	
200	1,200	2,00	6,00	16,00	20,00	60,00	78,00	200	400	
250	1,500	2,50	7,50	20,00	25,00	75,00	97,50	250	500	
300	1,800	3,00	9,00	24,00	30,00	90,00	117,00	300	600	
350	2,100	3,50	10,50	28,00	35,00	105,00	136,50	350	700	
400	2,400	4,00	12,00	32,00	40,00	120,00	156,00	400	800	
500	3,000	5,00	15,00	40,00	50,00	150,00	195,00	500	1000	
600	3,600	6,00	18,00	48,00	60,00	180,00	234,00	600	1200	
800	4,800	8,00	24,00	64,00	80,00	240,00	312,00	800	1600	
1000	6,000	10,00	30,00			300,00	390,00	1000	2000	
1200	7,200	12,00	36,00	96,00	120,00	360,00	468,00	1200	2400	
1400	8,400	14,00	42,00	112,00	140,00	420,00	546,00	1400	2800	
1600	9,600	16,00	48,00	128,00	160,00	480,00	624,00	1600	3200	
2000	12,000	20,00	60,00	160,00	200,00	600,00	780,00	2000	4000	

Приложение В

(справочное)

Нормы герметичности затворов арматуры, кроме регулирующей, по воздуху

Таблица В.1 - Нормы герметичности затворов по воздуху при давлении Pucn=0,6 МПа

Номи-		Класс г	ерметичности	затвора	
нальный	AA	В	С	CC	D
диаметр DN	Норма гермет	ичности затво	ра по воздуху	q , мм 3 /с, при P	<i>Pucn</i> = 0,6 МПа
3	0,54	0,90	9,0	66,90	90,00
6	1,08	1,80	1,80·10 ⁺¹	$1,34\cdot10^{+2}$	1,80·10 ⁺²
10	1,80	3,00	$3,00\cdot10^{+1}$	$2,23\cdot10^{+2}$	$3,00\cdot10^{+2}$
15	2,70	4,50	$4,50\cdot10^{+1}$	$3,35\cdot10^{+2}$	$4,50\cdot10^{+2}$
20	3,60	6,00	$6,00\cdot10^{+1}$	$4,46\cdot10^{+2}$	$6,00\cdot10^{+2}$
25	4,50	7,50	$7,50\cdot10^{+1}$	$5,58 \cdot 10^{+2}$	$7,50\cdot10^{+2}$
32	5,76	9,60	$9,60\cdot10^{+1}$	$7,14\cdot10^{+2}$	$9,60\cdot10^{+2}$
40	7,20	$1,20\cdot10^{+1}$	$1,20\cdot10^{+2}$	$8,92 \cdot 10^{+2}$	$1,20\cdot10^{+3}$
50	9,00	$1,50\cdot 10^{+1}$	$1,50\cdot10^{+2}$	$1,12\cdot10^{+3}$	$1,50\cdot10^{+3}$
65	$1,17\cdot10^{+1}$	1,95·10 ⁺¹	$1,95 \cdot 10^{+2}$	$1,45\cdot10^{+3}$	$1,95 \cdot 10^{+3}$
80	$1,44 \cdot 10^{+1}$	$2,40\cdot10^{+1}$	$2,40\cdot10^{+2}$	$1,78 \cdot 10^{+3}$	$2,40\cdot10^{+3}$
100	$1,80\cdot10^{+1}$	$3,00\cdot10^{+1}$	$3,00\cdot10^{+2}$	$2,23\cdot10^{+3}$	$3,00\cdot10^{+3}$
125	$2,25\cdot10^{+1}$	$3,75 \cdot 10^{+1}$	$3,75\cdot10^{+2}$	$2,79 \cdot 10^{+3}$	$3,75\cdot10^{+3}$
150	$2,70\cdot10^{+1}$	$4,50\cdot10^{+1}$	$4,50\cdot10^{+2}$	$3,35\cdot10^{+3}$	$4,50\cdot10^{+3}$
200	$3,60\cdot10^{+1}$	$6,00\cdot10^{+1}$	$6,00\cdot10^{+2}$	$4,46\cdot10^{+3}$	$6,00\cdot10^{+3}$
250	$4,50\cdot10^{+1}$	$7,50\cdot10^{+1}$	$7,50\cdot10^{+2}$	$5,58 \cdot 10^{+3}$	$7,50\cdot10^{+3}$
300	$5,40\cdot10^{+1}$	$9,00 \cdot 10^{+1}$	$9,00\cdot10^{+2}$	$6,69 \cdot 10^{+3}$	$9,00\cdot10^{+3}$
350	$6,30\cdot10^{+1}$	$1,05 \cdot 10^{+2}$	$1,05\cdot 10^{+3}$	$7,81\cdot10^{+3}$	$1,05\cdot 10^{+4}$
400	$7,20\cdot10^{+1}$	$1,20\cdot10^{+2}$	$1,20\cdot10^{+3}$	$8,92 \cdot 10^{+3}$	$1,20\cdot10^{+4}$
500	$9,00\cdot10^{+1}$	$1,50\cdot10^{+2}$	$1,50\cdot10^{+3}$	$1,12\cdot 10^{+4}$	$1,50\cdot10^{+4}$
600	$1,08\cdot10^{+2}$	$1,80\cdot10^{+2}$	$1,80\cdot10^{+3}$	1,34·10 ⁺⁴	$1,80\cdot10^{+4}$
800	1,44.10+2	$2,40\cdot10^{+2}$	$2,40\cdot10^{+3}$	$1,78 \cdot 10^{+4}$	$2,40\cdot10^{+4}$
1000	1,80·10 ⁺²	3,00.10+2	3,00.10+3	$2,23\cdot10^{+4}$	3,00.10+4
1200	$2,16\cdot10^{+2}$	$3,60\cdot10^{+2}$	3,60·10 ⁺³	$2,68\cdot10^{+4}$	$3,60\cdot10^{+4}$
1400	$2,52\cdot10^{+2}$	$4,20\cdot10^{+2}$	$4,20\cdot10^{+3}$	$3,12\cdot10^{+4}$	$4,20\cdot10^{+4}$
1600	$2,88 \cdot 10^{+2}$	$4,80\cdot10^{+2}$	$4,80\cdot10^{+3}$	$3,57 \cdot 10^{+4}$	$4,80\cdot10^{+4}$
2000	3,60·10 ⁺²	6,00.10+2	6,00.10+3	$4,46\cdot10^{+4}$	$6,00\cdot10^{+4}$

Номи-		Класс гермети	чности затвора	
нальный	Е	EE	F	G
диаметр DN	Норма герметичн	ости затвора по в	оздуху q , мм 3 /c, пр	ои <i>Pucn</i> = 0,6 МПа
3	$9,00\cdot10^{+2}$	$1,41\cdot10^{+3}$	9,00.10+3	1,80.10+4
6	$1,80\cdot10^{+3}$	$2,82\cdot10^{+3}$	$1,80\cdot10^{+3}$	$3,60\cdot10^{+4}$
10	$3,00\cdot10^{+3}$	$4,70\cdot10^{+3}$	$3,00\cdot10^{+4}$	$6,00\cdot10^{+4}$
15	$4,50\cdot10^{+3}$	$7.05 \cdot 10^{+3}$	$4,50.10^{+4}$	$9,00\cdot10^{+4}$
20	$6.00 \cdot 10^{+3}$	$9.40 \cdot 10^{+3}$	$6.00 \cdot 10^{+4}$	$1,20\cdot10^{+5}$
25	$7,50\cdot10^{+3}$	$1.18 \cdot 10^{+4}$	$7,50\cdot10^{+4}$	$1,50\cdot10^{+5}$
32	$9,60\cdot10^{+3}$	$1,50.10^{+4}$	$9,60.10^{+4}$	$1,92 \cdot 10^{+5}$
40	$1,20\cdot10^{+4}$	$1,88 \cdot 10^{+4}$	$1,20\cdot10^{+5}$	$2,40\cdot10^{+5}$
50	$1,50\cdot10^{+4}$	$2,35\cdot10^{+4}$	$1,50.10^{+5}$	$3,00\cdot10^{+5}$
65	$1,95 \cdot 10^{+4}$	$3,06\cdot10^{+4}$	$1,95 \cdot 10^{+5}$	3,90.10+5
80	$2,40\cdot10^{+4}$	$3,76\cdot10^{+4}$	$2,40\cdot10^{+5}$	$4,80\cdot10^{+5}$
100	$3,00\cdot10^{+4}$	$4,70\cdot10^{+4}$	$3,00\cdot10^{+5}$	$6,00\cdot10^{+5}$
125	$3,75\cdot10^{+4}$	5,88·10 ⁺⁴	$3,75\cdot10^{+5}$	$7,50\cdot10^{+5}$
150	$4,50\cdot10^{+4}$	$7,05\cdot 10^{+4}$	$4,50\cdot10^{+5}$	$9,00\cdot10^{+5}$
200	6,00.10+4	$9,40\cdot10^{+4}$	$6,00\cdot10^{+5}$	$1,20\cdot10^{+6}$
250	$7,50\cdot10^{+4}$	$1,18\cdot10^{+5}$	$7,50\cdot10^{+5}$	$1,50\cdot10^{+6}$
300	$9,00\cdot10^{+4}$	$1,41\cdot10^{+5}$	$9,00\cdot10^{+5}$	$1,80\cdot10^{+6}$
350	$1,05\cdot10^{+5}$	$1,65\cdot10^{+5}$	$1,05\cdot 10^{+6}$	$2,10\cdot10^{+6}$
400	$1,20\cdot10^{+5}$	$1,88 \cdot 10^{+5}$	1,20.10+6	$2,40\cdot10^{+6}$
500	$1,50\cdot10^{+5}$	$2,35\cdot10^{+5}$	$1,50\cdot10^{+6}$	3,00.10+6
600	1,80·10 ⁺⁵	$2,82 \cdot 10^{+5}$	$1,80\cdot10^{+6}$	$3,60\cdot10^{+6}$
800	$2,40\cdot10^{+5}$	$3,76\cdot10^{+5}$	$2,40\cdot10^{+6}$	$4,80\cdot10^{+6}$
1000	3,00·10 ⁺⁵	$4,70\cdot10^{+5}$	3,00·10 ⁺⁶	6,00.10+6
1200	$3,60\cdot10^{+5}$	$5,64\cdot10^{+5}$	$3,60\cdot10^{+6}$	$7,20\cdot10^{+6}$
1400	$4,20\cdot10^{+5}$	$6,58 \cdot 10^{+5}$	$4,20\cdot10^{+6}$	$8,40\cdot10^{+6}$
1600	$4,80\cdot10^{+5}$	$7,52\cdot10^{+5}$	$4,80\cdot10^{+6}$	$9,60\cdot10^{+6}$
2000	6,00.10+5	$9,40\cdot10^{+5}$	6,00.10+6	$1,20\cdot10^{+7}$

Таблица В.2 - Нормы герметичности затворов по воздух для класса AA при давлении Pucn = PN (Pp)

Номи-	Класс герметичности затвора АА							
нальный	Норма гери	Норма герметичности затвора по воздуху q , мм 3 /с, при $Pucn = PN$ (Pp)						
диаметр	До PN 6,3	PN 10	PN 16	PN20, PN25	PN 40	PN 63		
DN	включ.	111 10	110 10	F1N20, F1N23	111 40	1103		
3	0,54	0,54	0,70	1,05	1,64	2,54		
6	1,08	1,33	1,99	2,98	4,64	7,18		
10	1,80	2,85	4,28	6,42	9,98	$1,54\cdot 10^{+1}$		
15	2,70	5,24	7,86	$1,18\cdot10^{+1}$	$1,83 \cdot 10^{+1}$	$2,84\cdot10^{+1}$		
20	3,60	8,07	$1,21\cdot10^{+1}$	$1,81\cdot 10^{+1}$	$2,82 \cdot 10^{+1}$	$4,37 \cdot 10^{+1}$		
25	4,50	$1,13\cdot10^{+1}$	$1,69 \cdot 10^{+1}$	$2,54\cdot10^{+1}$	$3,95 \cdot 10^{+1}$	$6,11\cdot10^{+1}$		
32	5,76	$1,63\cdot10^{+1}$	$2,45\cdot10^{+1}$	$3,67\cdot10^{+1}$	$5,71\cdot10^{+1}$	$8,84 \cdot 10^{+1}$		
40	7,20	$2,28\cdot10^{+1}$	$3,42\cdot10^{+1}$	$5,13\cdot10^{+1}$	$7,98 \cdot 10^{+1}$	$1,24\cdot10^{+2}$		
50	9,00	$3,19\cdot10^{+1}$	$4,78 \cdot 10^{+1}$	$7,17\cdot10^{+1}$	$1,12\cdot10^{+2}$	$1,73 \cdot 10^{+2}$		
65	$1,17\cdot 10^{+1}$	$4,73 \cdot 10^{+1}$	$7,09 \cdot 10^{+1}$	$1,06\cdot10^{+2}$	$1,65\cdot 10^{+2}$	$2,56\cdot10^{+2}$		
80	$1,44\cdot10^{+1}$	$6,45\cdot10^{+1}$	$9,68 \cdot 10^{+1}$	$1,45\cdot10^{+2}$	$2,26\cdot10^{+2}$	$3,50\cdot10^{+2}$		
100	$1,80\cdot10^{+1}$	$9,02\cdot10^{+1}$	$1,35\cdot10^{+2}$	$2,03\cdot10^{+2}$	$3,16\cdot10^{+2}$	$4,88 \cdot 10^{+2}$		
125	$2,25\cdot10^{+1}$	$1,26\cdot10^{+2}$	$1,89 \cdot 10^{+2}$	$2,84\cdot10^{+2}$	$4,41\cdot10^{+2}$	$6,83\cdot10^{+2}$		
150	$2,70\cdot10^{+1}$	$1,66\cdot10^{+2}$	$2,49\cdot10^{+2}$	$3,73\cdot10^{+2}$	$5,80\cdot10^{+2}$	$8,97 \cdot 10^{+2}$		
200	$3,60\cdot10^{+1}$	$2,55\cdot10^{+2}$	$3,83\cdot10^{+2}$	$5,74\cdot10^{+2}$	$8,93 \cdot 10^{+2}$	$1,38\cdot10^{+3}$		
250	$4,50\cdot10^{+1}$	$3,56\cdot10^{+2}$	$5,35\cdot10^{+2}$	8,02·10 ⁺²	$1,25\cdot 10^{+3}$	$1,93 \cdot 10^{+3}$		
300	$5,40\cdot10^{+1}$	$4,69 \cdot 10^{+2}$	$7,03\cdot10^{+2}$	$1,05\cdot10^{+3}$	$1,64\cdot10^{+3}$	$2,54\cdot10^{+3}$		
350	6,30.10+1	$5,90\cdot10^{+2}$	8,86.10+2	$1,33\cdot10^{+3}$	$2,07\cdot10^{+3}$	$3,20\cdot10^{+3}$		
400	$7,20\cdot10^{+1}$	$7,21\cdot10^{+2}$	$1,08\cdot10^{+3}$	$1,62\cdot10^{+3}$	$2,53\cdot10^{+3}$	$3,91\cdot10^{+3}$		

Номи-	Класс герметичности затвора АА								
нальный	Норма герметичности затвора по воздуху q , мм ³ /с, при $Pucn = PN(Pp)$								
диаметр DN	PN 80	PN 100	PN 125	PN 160	PN 200				
3	3,20	3,98	4,96	6,33	7,89				
6	9,06	$1,13\cdot 10^{+1}$	$1,40\cdot10^{+1}$	$1,79 \cdot 10^{+1}$	$2,23\cdot10^{+1}$				
10	$1,95 \cdot 10^{+1}$	$2,42\cdot10^{+1}$	$3,02\cdot10^{+1}$	$3,85\cdot10^{+1}$	4,80·10 ⁺¹				
15	3,58·10 ⁺¹	$4,45\cdot10^{+1}$	$5,54 \cdot 10^{+1}$	$7,07 \cdot 10^{+1}$	$8,82 \cdot 10^{+1}$				
20	$5,51\cdot10^{+1}$	$6,86\cdot10^{+1}$	8,54·10 ⁺¹	1,09·10 ⁺²	$1,36\cdot10^{+2}$				
25	$7,70\cdot10^{+1}$	$9,58 \cdot 10^{+1}$	$1,19\cdot10^{+2}$	$1,52\cdot 10^{+2}$	$1,90\cdot10^{+2}$				
32	$1,12\cdot10^{+2}$	$1,39 \cdot 10^{+2}$	$1,73 \cdot 10^{+2}$	$2,20\cdot10^{+2}$	$2,75\cdot 10^{+2}$				
40	$1,56\cdot 10^{+2}$	$1,94 \cdot 10^{+2}$	$2,41\cdot10^{+2}$	$3,08\cdot10^{+2}$	3,84·10 ⁺²				
50	$2,18\cdot10^{+2}$	$2,71\cdot10^{+2}$	$3,37\cdot10^{+2}$	$4,30\cdot10^{+2}$	$5,37\cdot10^{+2}$				
65	3,23·10 ⁺²	$4,02\cdot10^{+2}$	5,00.10+2	6,38·10 ⁺²	$7,96\cdot10^{+2}$				
80	$4,41\cdot10^{+2}$	$5,48 \cdot 10^{+2}$	6,83·10 ⁺²	$8,71\cdot10^{+2}$	$1,09 \cdot 10^{+3}$				
100	$6,16\cdot10^{+2}$	$7,67 \cdot 10^{+2}$	$9,54 \cdot 10^{+2}$	$1,22\cdot10^{+3}$	$1,52\cdot10^{+3}$				
125	8,61·10 ⁺²	$1,07\cdot 10^{+3}$	1,33·10 ⁺³	$1,70\cdot 10^{+3}$	$2,12\cdot10^{+3}$				
150	$1,13\cdot 10^{+3}$	$1,41\cdot10^{+3}$	$1,75 \cdot 10^{+3}$	$2,24\cdot10^{+3}$	$2,79 \cdot 10^{+3}$				
200	$1,74\cdot10^{+3}$	$2,17\cdot10^{+3}$	$2,70\cdot10^{+3}$	$3,44\cdot10^{+3}$	$4,29\cdot10^{+3}$				
250	$2,44 \cdot 10^{+3}$	$3,03\cdot10^{+3}$	$3,77 \cdot 10^{+3}$	$4,81\cdot10^{+3}$	$6,00\cdot10^{+3}$				
300	$3,20\cdot10^{+3}$	$3,98\cdot10^{+3}$	$4,96\cdot10^{+3}$	$6,33\cdot10^{+3}$	$7,89\cdot10^{+3}$				
350	4,04.10+3	5,02·10 ⁺³	$6,25\cdot10^{+3}$	$7,97 \cdot 10^{+3}$	$9,94\cdot10^{+3}$				
400	$4,93 \cdot 10^{+3}$	$6,13\cdot10^{+3}$	$7,64\cdot10^{+3}$	$9,74\cdot10^{+3}$	1,21·10 ⁺⁴				

Таблица В.3 - Нормы герметичности затворов по воздуху для класса В при давлении Pucn = PN (Pp)

Номи-	Класс герметичности затвора В								
нальный	Норма гери	Норма герметичности затвора по воздуху q , мм ³ /с, при $Pucn = PN(Pp)$							
диаметр DN	До PN 6,3	PN 10	PN 16	PN20, PN25	PN 40	PN 63			
	включ.	0.00	1 17	1.76	2.72	4.22			
3	0,90	0,90	1,17	1,76	2,73	4,23			
6	1,80	2,21	3,31	4,97	7,73	$1,20\cdot 10^{+1}$			
10	3,00	4,75	7,13	$1,07 \cdot 10^{+1}$	$1,66\cdot10^{+1}$	$2,57\cdot10^{+1}$			
15	4,50	8,73	$1,31\cdot10^{+1}$	$1,96\cdot10^{+1}$	$3,06\cdot10^{+1}$	$4,73 \cdot 10^{+1}$			
20	6,00	$1,34\cdot10^{+1}$	$2,02\cdot10^{+1}$	$3,02\cdot10^{+1}$	$4,71\cdot10^{+1}$	$7,28\cdot10^{+1}$			
25	7,50	1,88 10 ⁺¹	$2,82 \cdot 10^{+1}$	$4,23\cdot10^{+1}$	$6,58 \cdot 10^{+1}$	$1,02\cdot 10^{+2}$			
32	9,60	$2,72\ 10^{+1}$	$4,08 \cdot 10^{+1}$	$6,12\cdot10^{+1}$	$9,52 \cdot 10^{+1}$	$1,47\cdot 10^{+2}$			
40	$1,20\cdot10^{+1}$	3,80 10 ⁺¹	$5,70\cdot10^{+1}$	$8,56\cdot10^{+1}$	$1,33\cdot10^{+2}$	$2,06\cdot10^{+2}$			
50	$1,50\cdot10^{+1}$	$5,31\ 10^{+1}$	$7,97 \cdot 10^{+1}$	$1,20\cdot10^{+2}$	$1,86\cdot10^{+2}$	$2,88\cdot10^{+2}$			
65	$1,95 \cdot 10^{+1}$	$7,88 \cdot 10^{+1}$	$1,18\cdot10^{+2}$	$1,77 \cdot 10^{+2}$	$2,76\cdot10^{+2}$	$4,27\cdot10^{+2}$			
80	$2,40\cdot10^{+1}$	$1,08\cdot 10^{+2}$	$1,61\cdot10^{+2}$	$2,42\cdot10^{+2}$	$3,76\cdot10^{+2}$	$5,83\cdot10^{+2}$			
100	$3,00\cdot10^{+1}$	$1,50\cdot10^{+2}$	$2,25\cdot10^{+2}$	$3,38\cdot10^{+2}$	$5,26\cdot10^{+2}$	$8,14\cdot10^{+2}$			
125	$3,75\cdot10^{+1}$	$2,10\cdot10^{+2}$	$3,15\cdot10^{+2}$	$4,73 \cdot 10^{+2}$	$7,35\cdot10^{+2}$	$1,14\cdot10^{+3}$			
150	$4,50\cdot10^{+1}$	$2,76\cdot10^{+2}$	$4,14\cdot10^{+2}$	$6,21\cdot10^{+2}$	$9,66\cdot10^{+2}$	$1,50\cdot10^{+3}$			
200	$6,00\cdot10^{+1}$	$4,25\cdot10^{+2}$	$6,38\cdot10^{+2}$	$9,57 \cdot 10^{+2}$	$1,49\cdot10^{+3}$	$2,30\cdot10^{+3}$			
250	$7,50\cdot10^{+1}$	$5,94\cdot10^{+2}$	$8,91\cdot10^{+2}$	$1,34\cdot10^{+3}$	$2,08\cdot10^{+3}$	$3,22\cdot10^{+3}$			
300	$9,00\cdot10^{+1}$	$7,81\cdot10^{+2}$	$1,17\cdot10^{+3}$	$1,76\cdot10^{+3}$	$2,73\cdot10^{+3}$	$4,23\cdot10^{+3}$			
350	$1,05\cdot 10^{+2}$	$9,84\cdot10^{+2}$	$1,48 \cdot 10^{+3}$	$2,21\cdot10^{+3}$	$3,44\cdot10^{+3}$	$5,33\cdot10^{+3}$			
400	$1,20\cdot10^{+2}$	$1,20\cdot10^{+3}$	$1,80\cdot10^{+3}$	$2,71\cdot10^{+3}$	$4,21\cdot10^{+3}$	$6,51\cdot10^{+3}$			

Номи-	Класс герметичности затвора В								
нальный	Норма гермет	Норма герметичности затвора по воздуху q , мм ³ /с, при $Pucn = PN(Pp)$							
диаметр DN	PN 80	PN 100	PN 125	PN 160	PN 200				
3	5,34	6,64	8,27	1,05·10 ⁺¹	1,31·10 ⁺¹				
6	$1,51\cdot 10^{+1}$	$1,88 \cdot 10^{+1}$	$2,34\cdot10^{+1}$	$2,98 \cdot 10^{+1}$	$3,72 \cdot 10^{+1}$				
10	3,25·10 ⁺¹	4,04·10 ⁺¹	5,03·10 ⁺¹	6,42·10 ⁺¹	$8,00\cdot10^{+1}$				
15	$5,97 \cdot 10^{+1}$	$7,42\cdot10^{+1}$	$9,24\cdot10^{+1}$	$1,18\cdot 10^{+2}$	$1,47\cdot 10^{+2}$				
20	$9,19\cdot10^{+1}$	$1,14\cdot 10^{+2}$	$1,42\cdot10^{+2}$	$1,81\cdot 10^{+2}$	$2,26\cdot10^{+2}$				
25	$1,28\cdot 10^{+2}$	$1,60\cdot10^{+2}$	$1,99 \cdot 10^{+2}$	$2,54\cdot10^{+2}$	$3,16\cdot10^{+2}$				
32	$1,86\cdot10^{+2}$	$2,31\cdot10^{+2}$	2,88·10 ⁺²	$3,67\cdot10^{+2}$	$4,58\cdot10^{+2}$				
40	$2,60\cdot10^{+2}$	3,23·10 ⁺²	$4,02\cdot10^{+2}$	$5,13\cdot10^{+2}$	$6,40\cdot10^{+2}$				
50	$3,63\cdot10^{+2}$	$4,52\cdot10^{+2}$	$5,62\cdot10^{+2}$	$7,17\cdot10^{+2}$	$8,95 \cdot 10^{+2}$				
65	$5,38\cdot10^{+2}$	6,69·10 ⁺²	$8,34\cdot10^{+2}$	$1,06\cdot10^{+3}$	$1,33\cdot10^{+3}$				
80	$7,35\cdot10^{+2}$	$9,14\cdot10^{+2}$	$1,14\cdot 10^{+3}$	$1,45\cdot10^{+3}$	$1,81\cdot 10^{+3}$				
100	1,03·10 ⁺³	$1,28\cdot10^{+3}$	1,59·10 ⁺³	2,03·10 ⁺³	$2,53\cdot10^{+3}$				
125	$1,44\cdot10^{+3}$	$1,79 \cdot 10^{+3}$	$2,22\cdot10^{+3}$	$2,84\cdot10^{+3}$	$3,54\cdot10^{+3}$				
150	$1,89 \cdot 10^{+3}$	$2,35\cdot10^{+3}$	$2,92 \cdot 10^{+3}$	$3,73\cdot10^{+3}$	$4,65\cdot10^{+3}$				
200	$2,90\cdot10^{+3}$	$3,61\cdot10^{+3}$	$4,50\cdot10^{+3}$	$5,74\cdot10^{+3}$	$7,16\cdot10^{+3}$				
250	$4,06\cdot10^{+3}$	$5,05\cdot10^{+3}$	$6,29\cdot10^{+3}$	$8,02\cdot10^{+3}$	$1,00\cdot 10^{+4}$				
300	$5,34\cdot10^{+3}$	$6,64\cdot10^{+3}$	$8,27\cdot10^{+3}$	$1,05\cdot 10^{+4}$	$1,31\cdot10^{+4}$				
350	$6,73\cdot10^{+3}$	$8,37\cdot10^{+3}$	$1,04 \cdot 10^{+4}$	1,33·10 ⁺⁴	1,66.10+4				
400	$8,22\cdot10^{+3}$	$1,02\cdot10^{+4}$	$1,27\cdot10^{+4}$	$1,62\cdot10^{+4}$	$2,02\cdot10^{+4}$				

Таблица В.4 - Нормы герметичности затворов по воздуху для класса С при давлении Pucn = PN (Pp)

	Класс герметичности затвора С								
Номиналь-	Норма гермет	тичности затво	рмети шоети з ра по возлуху	$\frac{q}{q}$, мм ³ /с, при P	Pucn = PN(Pn)				
ный диа-	До PN 6,3								
метр DN	включ.	PN 10	PN 16	PN20, PN25	PN 40				
3	9,0	9,0	8,2	1,23 10 ⁺¹	$1,91\cdot 10^{+1}$				
6	$1,80\cdot 10^{+1}$	1,80·10 ⁺¹	2,32 10 ⁺¹	$3,48\cdot10^{+1}$	$5,41\cdot10^{+1}$				
10	3,00.10+1	3,33·10 ⁺¹	4,99 10 ⁺¹	$7,49 \cdot 10^{+1}$	$1,16\cdot10^{+2}$				
15	$4,50\cdot10^{+1}$	$6,11\cdot 10^{+1}$	9,17 10 ⁺¹	1,38·10 ⁺²	$2,14\cdot10^{+2}$				
20	$6,00\cdot10^{+1}$	$9,41\cdot10^{+1}$	$1,41\cdot10^{+2}$	$2,12\cdot10^{+2}$	$3,29\cdot10^{+2}$				
25	$7,50\cdot10^{+1}$	1,32·10 ⁺²	$1,97 \cdot 10^{+2}$	$2,96\cdot10^{+2}$	$4,60\cdot10^{+2}$				
32	9,60.10+1	$1,90\cdot10^{+2}$	$2,86\cdot10^{+2}$	$4,29 \cdot 10^{+2}$	$6,67\cdot10^{+2}$				
40	$1,20\cdot10^{+2}$	2,66.10+2	$3,99 \cdot 10^{+2}$	$5,99 \cdot 10^{+2}$	$9,32\cdot10^{+2}$				
50	$1,50\cdot10^{+2}$	$3,72 \cdot 10^{+2}$	5,58·10 ⁺²	$8,37 \cdot 10^{+2}$	$1,30\cdot10^{+3}$				
65	$1,95 \cdot 10^{+2}$	$5,51\cdot10^{+2}$	$8,27\cdot10^{+2}$	$1,24\cdot10^{+3}$	$1,93 \cdot 10^{+3}$				
80	$2,40\cdot10^{+2}$	$7,53\cdot10^{+2}$	$1,13\cdot10^{+3}$	$1,69 \cdot 10^{+3}$	$2,63\cdot10^{+3}$				
100	$3,00\cdot10^{+2}$	$1,05\cdot 10^{+3}$	$1,58 \cdot 10^{+3}$	$2,37\cdot10^{+3}$	$3,68\cdot10^{+3}$				
125	$3,75\cdot10^{+2}$	$1,47\cdot10^{+3}$	$2,21\cdot10^{+3}$	$3,31\cdot10^{+3}$	$5,15\cdot10^{+3}$				
150	$4,50\cdot10^{+2}$	$1,93 \cdot 10^{+3}$	$2,90\cdot10^{+3}$	$4,35\cdot10^{+3}$	$6,76\cdot10^{+3}$				
200	$6,00\cdot10^{+2}$	$2,98 \cdot 10^{+3}$	$4,46\cdot10^{+3}$	$6,70\cdot10^{+3}$	$1,04\cdot 10^{+4}$				
250	$7,50\cdot10^{+2}$	$4,16\cdot10^{+3}$	$6,24\cdot10^{+3}$	$9,36\cdot10^{+3}$	$1,46\cdot10^{+4}$				
300	$9,00\cdot10^{+2}$	$5,47\cdot10^{+3}$	$8,20\cdot10^{+3}$	$1,23\cdot10^{+4}$	$1,91\cdot 10^{+4}$				
350	$1,05\cdot 10^{+3}$	$6,89 \cdot 10^{+3}$	$1,03\cdot10^{+4}$	1,55.10+4	$2,41\cdot10^{+4}$				
400	$1,20\cdot10^{+3}$	$8,42\cdot10^{+3}$	1,26.10+4	$1,89 \cdot 10^{+4}$	$2,95 \cdot 10^{+4}$				
500	$1,50\cdot10^{+3}$	$1,18\cdot 10^{+4}$	$1,76\cdot10^{+4}$	$2,65\cdot10^{+4}$	$4,12\cdot10^{+4}$				
600	$1,80\cdot10^{+3}$	$1,55\cdot 10^{+4}$	$2,32\cdot10^{+4}$	$3,48\cdot10^{+4}$	$5,41\cdot10^{+4}$				
800	$2,40\cdot10^{+3}$	$2,38\cdot10^{+4}$	$3,57 \cdot 10^{+4}$	$5,36\cdot10^{+4}$	$8,33\cdot10^{+4}$				
1000	$3,00\cdot10^{+3}$	$3,33\cdot10^{+4}$	$4,99 \cdot 10^{+4}$	7,49·10 ⁺⁴	$1,16\cdot 10^{+5}$				
1200	$3,60\cdot10^{+3}$	$4,37\cdot10^{+4}$	$6,56\cdot10^{+4}$	$9,84 \cdot 10^{+4}$	$1,53\cdot10^{+5}$				
1400	$4,20\cdot10^{+3}$	$5,51\cdot10^{+4}$	$8,27\cdot10^{+4}$	$1,24\cdot10^{+5}$	$1,93 \cdot 10^{+5}$				
1600	$4,80\cdot10^{+3}$	$6,73 \cdot 10^{+4}$	$1,01\cdot 10^{+5}$	$1,52\cdot10^{+5}$	$2,36\cdot10^{+5}$				
2000	$6,00\cdot10^{+3}$	9,41·10 ⁺⁴	$1,41\cdot 10^{+5}$	$2,12\cdot10^{+5}$	$3,29\cdot10^{+5}$				

ГОСТ Р

Номиналь-		Класс герметичности затвора С							
ный диа-	Норма герм	етичности з	ватвора по в	оздуху q , мм	r³/с, при <i>Рис</i>	en = PN(Pp)			
метр DN	PN 63	PN 80	PN 100	PN 125	PN 160	PN 200			
3	2,96·10 ⁺¹	$3,74\cdot10^{+1}$	$4,65\cdot10^{+1}$	$5,79 \cdot 10^{+1}$	$7,38 \cdot 10^{+1}$	$9,20\cdot10^{+1}$			
6	$8,38\cdot10^{+1}$	$1,06\cdot10^{+2}$	$1,31\cdot10^{+2}$	$1,64\cdot10^{+2}$	$2,09\cdot10^{+2}$	$2,60\cdot10^{+2}$			
10	$1,80\cdot10^{+2}$	$2,27\cdot10^{+2}$	$2,83\cdot10^{+2}$	$3,52\cdot10^{+2}$	$4,49\cdot10^{+2}$	$5,60\cdot10^{+2}$			
15	$3,31\cdot10^{+2}$	$4,18\cdot10^{+2}$	$5,20\cdot10^{+2}$	$6,47\cdot10^{+2}$	$8,25\cdot10^{+2}$	$1,03\cdot10^{+3}$			
20	$5,10\cdot10^{+2}$	$6,43\cdot10^{+2}$	$8,00\cdot10^{+2}$	$9,96\cdot10^{+2}$	$1,27\cdot10^{+3}$	$1,58 \cdot 10^{+3}$			
25	$7,12\cdot10^{+2}$	$8,99 \cdot 10^{+2}$	$1,12\cdot10^{+3}$	$1,39 \cdot 10^{+3}$	$1,78 \cdot 10^{+3}$	$2,21\cdot10^{+3}$			
32	$1,03\cdot10^{+3}$	$1,30\cdot10^{+3}$	$1,62\cdot10^{+3}$	$2,02\cdot10^{+3}$	$2,57\cdot10^{+3}$	$3,21\cdot10^{+3}$			
40	$1,44\cdot10^{+3}$	$1,82 \cdot 10^{+3}$	$2,26\cdot10^{+3}$	$2,82\cdot10^{+3}$	$3,59 \cdot 10^{+3}$	$4,48 \cdot 10^{+3}$			
50	$2,01\cdot10^{+3}$	$2,54\cdot10^{+3}$	$3,16\cdot10^{+3}$	$3,94\cdot10^{+3}$	$5,02\cdot10^{+3}$	$6,26\cdot10^{+3}$			
65	$2,99 \cdot 10^{+3}$	$3,77 \cdot 10^{+3}$	$4,69 \cdot 10^{+3}$	$5,84\cdot10^{+3}$	$7,44\cdot10^{+3}$	$9,28\cdot10^{+3}$			
80	$4,08\cdot10^{+3}$	$5,14\cdot10^{+3}$	$6,40\cdot10^{+3}$	$7,97 \cdot 10^{+3}$	$1,02\cdot10^{+4}$	$1,27\cdot10^{+4}$			
100	$5,70\cdot10^{+3}$	$7,19\cdot10^{+3}$	$8,94 \cdot 10^{+3}$	$1,11\cdot 10^{+4}$	$1,42\cdot10^{+4}$	$1,77 \cdot 10^{+4}$			
125	$7,96\cdot10^{+3}$	$1,00\cdot 10^{+4}$	$1,25\cdot10^{+4}$	$1,56\cdot10^{+4}$	$1,98 \cdot 10^{+4}$	$2,48\cdot10^{+4}$			
150	$1,05\cdot 10^{+4}$	$1,32\cdot10^{+4}$	$1,64\cdot10^{+4}$	$2,05\cdot10^{+4}$	$2,61\cdot10^{+4}$	$3,25\cdot10^{+4}$			
200	$1,61\cdot10^{+4}$	$2,03\cdot10^{+4}$	$2,53\cdot10^{+4}$	$3,15\cdot10^{+4}$	$4,02\cdot10^{+4}$	$5,01\cdot10^{+4}$			
250	$2,25\cdot10^{+4}$	$2,84\cdot10^{+4}$	$3,53\cdot10^{+4}$	$4,40\cdot10^{+4}$	$5,61\cdot10^{+4}$	$7,00\cdot10^{+4}$			
300	$2,96\cdot10^{+4}$	$3,74\cdot10^{+4}$	$4,65\cdot10^{+4}$	$5,79 \cdot 10^{+4}$	$7,38 \cdot 10^{+4}$	$9,20\cdot10^{+4}$			
350	$3,73\cdot10^{+4}$	$4,71\cdot10^{+4}$	5,86.10+4	$7,29 \cdot 10^{+4}$	$9,30\cdot10^{+4}$	$1,16\cdot10^{+5}$			
400	$4,56\cdot10^{+4}$	$5,75\cdot10^{+4}$	$7,15\cdot10^{+4}$	$8,91\cdot10^{+4}$	$1,14\cdot 10^{+5}$	$1,42\cdot10^{+5}$			
500	$6,37\cdot10^{+4}$	$8,04\cdot10^{+4}$	$1,00\cdot10^{+5}$	$1,24\cdot10^{+5}$	$1,59 \cdot 10^{+5}$	$1,98 \cdot 10^{+5}$			
600	$8,38\cdot10^{+4}$	$1,06\cdot10^{+5}$	$1,31\cdot10^{+5}$	$1,64\cdot10^{+5}$	$2,09\cdot10^{+5}$	$2,60\cdot10^{+5}$			
800	$1,29\cdot10^{+5}$	$1,63\cdot10^{+5}$	$2,02\cdot10^{+5}$	$2,52\cdot10^{+5}$	$3,21\cdot10^{+5}$	$4,01\cdot10^{+5}$			
1000	$1,80\cdot10^{+5}$	$2,27\cdot10^{+5}$	$2,83\cdot10^{+5}$	$3,52 \cdot 10^{+5}$	$4,49 \cdot 10^{+5}$	$5,60\cdot10^{+5}$			
1200	$2,37\cdot10^{+5}$	$2,99 \cdot 10^{+5}$	$3,72 \cdot 10^{+5}$	$4,63\cdot10^{+5}$	$5,90\cdot10^{+5}$	$7,36\cdot10^{+5}$			
1400	$2,99 \cdot 10^{+5}$	$3,77 \cdot 10^{+5}$	$4,68 \cdot 10^{+5}$	$5,83\cdot10^{+5}$	$7,44 \cdot 10^{+5}$	$9,28\cdot10^{+5}$			
1600	$3,65\cdot10^{+5}$	$4,60\cdot10^{+5}$	$5,72\cdot10^{+5}$	$7,13\cdot10^{+5}$	$9,09 \cdot 10^{+5}$	$1,13\cdot10^{+6}$			
2000	$5,10\cdot10^{+5}$	$6,43\cdot10^{+5}$	$8,00\cdot10^{+5}$	$9,96\cdot10^{+5}$	$1,27\cdot10^{+6}$	$1,58\cdot10^{+6}$			

Приложение Г

(рекомендуемое)

Рекомендации по назначению классов герметичности арматуры

Таблица Г.1 - Рекомендации по назначению классов герметичности затворов арматуры, кроме регулирующей, рабочая среда — вода

Вид армату-	Doggood 200 200 200 200 200 200 200 200 200 20		Клас	сг	ерм	етич	IHO	сти	затв	opa	
ры	Разновидность арматуры	A	AA							F	G
	Уплотнение затвора «м	ета	лл-м	ета	ЛЛ	»					
	клапаны	+	+	+	+	+	+	+	+	+	+
	задвижки	+	+	+	+	+	+	+	+	+	+
Запорная	дисковые затворы	+	+	+	+	+	+	+	+	+	+
	краны	+	+	+	+	+	+	+	+	+	+
	распределительно-смесительная			+	+	+	+	+			
Фазоразделит	гельная	+	+	+							
Обратная	затворы				+	+	+	+	+	+	+
	клапаны				+	+	+	+	+	+	+
Предохранит	ельная			+	+						
Запорно-регу	лирующая		+	+	+	+	+				
	Уплотнение затвора	a «N	1ЯГК(e»							
	клапаны	+	+	+	+	+	+				
	задвижки	+	+	+	+	+	+				
Запорная	дисковые затворы	+	+	+	+	+	+				
	краны	+	+	+	+	+	+	+	+	+	+
	распределительно-смесительная			+	+	+	+	+			
Фазоразделит	Фазоразделительная		+	+							
Обратная	затворы	+	+	+	+	+					
	клапаны		+	+	+	+					
Предохранит	ельная	+	+	+							
Запорно-регу	лирующая	+	+	+	+	+					

Таблица Г.2 - Рекомендации по назначению классов герметичности затворов арматуры, кроме регулирующей, рабочая среда — воздух

Вид армату-	Doorgony and an analysis		Клас	сг	ерм	етич	НО	сти	затв	opa	
ры	Разновидность арматуры		AA	B	C	CC	D	E	EE	F	G
	Уплотнение затвора «м	ета.	лл-м	ета	ЛЛ	»					
	клапаны	+	+	+	+	+	+	+	+	+	+
	задвижки	+	+	+	+	+	+	+	+		
Запорная	дисковые затворы			+	+	+	+	+	+	+	+
	краны			+	+	+	+	+	+		
	распределительно-смесительная			+	+	+	+	+			
Фазоразделит	гельная	+	+	+							
Обратная	затворы						+	+	+	+	
	клапаны				+	+	+	+	+	+	
Предохранит	ельная		+	+	+						
Запорно-регу	лирующая		+	+	+						
	Уплотнение затвора	ı «N	1ЯГК(e»			•			1	
	клапаны	+	+	+	+						
	задвижки	+	+	+	+						
Запорная	дисковые затворы	+	+	+	+	+					
	краны	+	+	+	+	+	+	+	+	+	+
	распределительно-смесительная			+	+	+	+	+			
Фазоразделит	Фазоразделительная		+	+							
Обратная	затворы	+	+	+	+	+					
	клапаны		+	+	+	+					
Предохранит	ельная	+	+	+							
Запорно-регу	лирующая	+	+	+	+	+					

Таблица Г.3 - Рекомендации по назначению классов герметичности затворов регулирующей арматуры

Рекомен- дуемый		Класс герметичности затвора							
класс герме- тичности	I	II	III	IV	V	VI			
Тип регу- лирующего клапана	Все типы	клеточный разгружен-	односе- дельный,	клеточный неразгру-		Односе- дельный с мягким уп- лотнением затвора			

Приложение Д (справочное)

Нормы герметичности затворов регулирующей арматуры Таблица Д.1

	Ц.1		
Условная		асс герметичности затв	
пропускная	II	III	IV
способность	δ затв=0,50% от $K{ m v}_{ m y}$	δ затв=0,10% от $K{ m v}_{ m y}$	δ затв=0,01% от $K{ m v}_{ m y}$
Kv_y , м $^3/ч$		затвора по воде q , мм $^3/6$	
0,10	$2,67\cdot10^{+2}$	$5,50\cdot10^{+1}$	$0,55 \cdot 10^{+1}$
0,16	$4,33\cdot10^{+2}$	$8,83 \cdot 10^{+1}$	$0.88 \cdot 10^{+1}$
0,25	$6,83\cdot10^{+2}$	$1,38 \cdot 10^{+2}$	1,38·10 ⁺¹
0,40	$1,10\cdot10^{+3}$	$2,17\cdot10^{+2}$	$2,17\cdot 10^{+1}$
0,63	$1,67 \cdot 10^{+3}$	$3,33\cdot10^{+2}$	$3,33\cdot10^{+1}$
1,00	$2,67 \cdot 10^{+3}$	$5,50\cdot10^{+2}$	5,50·10 ⁺¹
1,60	$4,33\cdot10^{+3}$	$8,83 \cdot 10^{+2}$	8,83·10 ⁺¹
2,50	$6,83\cdot10^{+3}$	$1,38\cdot10^{+3}$	1,38·10 ⁺²
4,00	$1,10\cdot10^{+4}$	$2,17\cdot10^{+3}$	$2,17\cdot10^{+2}$
6,30	$1,67 \cdot 10^{+4}$	$3,33\cdot10^{+3}$	$3,33\cdot10^{+2}$
10,00	$2,67\cdot10^{+4}$	5,50·10 ⁺³	5,50·10 ⁺²
16,00	4,33·10 ⁺⁴	8,83·10 ⁺³	8,83·10 ⁺²
25,00	6,83·10 ⁺⁴	1,38·10 ⁺⁴	1,38·10 ⁺³
32,00	8,33·10 ⁺⁴	$1,67 \cdot 10^{+4}$	1,67·10 ⁺³
40,00	$1,10\cdot10^{+5}$	$2,17\cdot 10^{+4}$	$2,17\cdot10^{+3}$
63,00	$1,67\cdot10^{+5}$	$3,33\cdot10^{+4}$	3,33·10 ⁺³
80,00	$2,17\cdot10^{+5}$	$4,33\cdot10^{+4}$	4,33·10 ⁺³
100,00	$2,67\cdot10^{+5}$	5,50.10+4	5,50·10 ⁺³
125,00	$3,33\cdot10^{+5}$	6,83·10 ⁺⁴	6,83·10 ⁺³
160,00	$4,33\cdot10^{+5}$	8,83·10 ⁺⁴	8,83·10 ⁺³
250,00	$6,83 \cdot 10^{+5}$	$1,38\cdot10^{+5}$	1,38·10 ⁺⁴
320,00	8,33·10 ⁺⁵	$1,67 \cdot 10^{+5}$	$1,67 \cdot 10^{+4}$
400,00	$1,08\cdot10^{+6}$	$2,17\cdot10^{+5}$	$2,17\cdot 10^{+4}$
500,00	$1,33\cdot10^{+6}$	$2,67\cdot10^{+5}$	$2,67 \cdot 10^{+4}$
630,00	$1,67\cdot10^{+6}$	$3,33\cdot10^{+5}$	3,33·10 ⁺⁴
800,00	$2,17\cdot10^{+6}$	$4,33\cdot10^{+5}$	4,33·10 ⁺⁴
1000,00	$2,67\cdot10^{+6}$	5,50·10 ⁺⁵	5,50.10+4
1250,00	$3,50\cdot10^{+6}$	$6,83\cdot10^{+5}$	6,83·10 ⁺⁴
1600,00	$4,33\cdot10^{+6}$	$8,83\cdot10^{+5}$	$8,83 \cdot 10^{+4}$
2240,00	$6,17\cdot 10^{+6}$	$1,23\cdot10^{+6}$	1,23·10 ⁺⁵
2500,00	7,00.10+6	$1,38 \cdot 10^{+6}$	1,38·10 ⁺⁵
4000,00	1,10.10+7	$2,17\cdot10^{+6}$	$2,17\cdot 10^{+5}$

Таблица Д.2

	Кла	асс герметичности затв	opa
Условная	II	III	IV
пропускная способность	δ затв=0,50% от K v $_{ m y}$	δ затв=0,10% от K v $_{ m y}$	δ затв=0,01% от K v $_{y}$
Kv_{v} , $M^{3}/4$	Норма гермет	ичности затвора по воз,	духу q , мм 3 /с,
y		ибс = 5 МПа и ΔP исп = 0),4 МПа
0,10	$9,67\cdot10^{+3}$	$2,00\cdot10^{+3}$	$2,00\cdot10^{+2}$
0,16	$1,55 \cdot 10^4$	$3,00\cdot10^{+3}$	$3,00\cdot10^{+2}$
0,25	$2,50\cdot10^4$	$4,83 \cdot 10^{+3}$	$4,83\cdot10^{+2}$
0,40	$4,00\cdot10^4$	$7,83 \cdot 10^{+3}$	$7,83\cdot10^{+2}$
0,63	$6,00\cdot10^4$	$1,20\cdot 10^{+4}$	1,20.10+3
1,00	$9,67 \cdot 10^{+4}$	$2,00\cdot10^{+4}$	2,00.10+3
1,60	$1,55 \cdot 10^{+5}$	3,00.10+4	3,00.10+3
2,50	2,50·10 ⁺⁵	$4,83 \cdot 10^{+4}$	$4,83 \cdot 10^{+3}$
4,00	4,00.10+5	$7,83 \cdot 10^{+4}$	$7,83\cdot10^{+3}$
6,30	$6,00\cdot10^{+5}$	$1,20\cdot10^{+5}$	1,20.10+4
10,00	$9,67\cdot10^{+5}$	$2,00\cdot10^{+5}$	2,00.10+4
16,00	$1,55\cdot10^{+6}$	$3,00\cdot10^{+5}$	3,00.10+4
25,00	$2,50\cdot10^{+6}$	$4,83 \cdot 10^{+5}$	4,83·10 ⁺⁴
32,00	$3,17\cdot10^{+6}$	$6,17\cdot10^{+5}$	$6,17\cdot 10^{+4}$
40,00	$4,00\cdot10^{+6}$	$7,83\cdot10^{+5}$	$7,83 \cdot 10^{+4}$
63,00	$6,00\cdot10^{+6}$	$1,20\cdot10^{+6}$	$1,20\cdot10^{+5}$
80,00	$7,83 \cdot 10^{+6}$	$1,53\cdot10^{+6}$	$1,53\cdot10^{+5}$
100,00	$9,67\cdot10^{+6}$	$2,00\cdot10^{+6}$	2,00.10+5
125,00	$1,20\cdot10^{+7}$	$2,50\cdot10^{+6}$	2,50·10 ⁺⁵
160,00	$1,55\cdot 10^{+7}$	$3,00\cdot10^{+6}$	3,00·10 ⁺⁵
250,00	$2,50\cdot10^{+7}$	$4,83 \cdot 10^{+6}$	4,83·10 ⁺⁵
320,00	$3,17 \cdot 10^{+7}$	$6,17 \cdot 10^{+6}$	$6,17\cdot10^{+5}$
400,00	4,00·10 ⁺⁷	$7,83 \cdot 10^{+6}$	$7,83 \cdot 10^{+5}$
500,00	$4,83 \cdot 10^{+7}$	$9,67 \cdot 10^{+6}$	$9,67 \cdot 10^{+5}$
630,00	6,00.10 ⁺⁷	$1,20\cdot10^{+7}$	$1,20\cdot10^{+6}$
800,00	$7,83 \cdot 10^{+7}$	1,53·10 ⁺⁷	$1,53\cdot10^{+6}$
1000,00	$9,67 \cdot 10^{+7}$	$2,00\cdot10^{+7}$	$2,00\cdot10^{+6}$
1250,00	$1,20\cdot10^{+8}$	$2,50\cdot10^{+7}$	$2,50\cdot10^{+6}$
1600,00	$1,55 \cdot 10^{+8}$	$3,00\cdot10^{+7}$	$3,00\cdot10^{+6}$
2240,00	$2,17\cdot10^{+8}$	$4,\!17\!\cdot\!10^{+7}$	$4,17 \cdot 10^{+6}$
2500,00	$2,50\cdot10^{+8}$	$4,83 \cdot 10^{+7}$	$4,83\cdot10^{+6}$
4000,00	$4,00\cdot10^{+8}$	$7,83 \cdot 10^{+7}$	$7,83 \cdot 10^{+6}$

Библиография

- [1] МУ 2.1.5.1183-03 Санитарно эпидемиологический надзор за использованием воды в системах водоснабжения промышленных предприятий
- [2] СанПиН 2.1.4.1074-01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества

От ЗАО «НПФ «ЦКБА»:

Первый заместитель генерального директора – исполнительный директор

А.Ю. Черногоров

Первый заместитель генерального

директора

Ю.И.Тарасьев

Заместитель генерального директора -

главный конструктор

В.В.Ширяев

Заместитель директора -

начальник технического отдела

С.Н.Дунаевский

Начальник научно - исследовательского отдела уплотнений, деталей и

комплектующих узлов

А.Ю.Калинин

Начальник отдела экспертизы, диагностики, испытаний, гидравлических исследований и

расчетов арматуры, к.т.н.

Е.Г.Пинаева

Заместитель начальника научно

- исследовательского отдела уплотнений,

деталей и комплектующих узлов

О.И.Федоров

Заместитель начальника отдела экспертизы, диагностики, испытаний, гидравлических исследований и

расчетов арматуры

М.И.Силивина